(************** Content-type: application/mathematica ************** CreatedBy='Mathematica 4.2' Mathematica-Compatible Notebook This notebook can be used with any Mathematica-compatible application, such as Mathematica, MathReader or Publicon. The data for the notebook starts with the line containing stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. *******************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 29649, 751]*) (*NotebookOutlinePosition[ 30314, 774]*) (* CellTagsIndexPosition[ 30270, 770]*) (*WindowFrame->Normal*) Notebook[{ Cell[BoxData[ \(\(\(\[IndentingNewLine]\)\(\(2 x\^3\ - \ 3 x\^2 - 2 x + 1 = 0\)\(\[IndentingNewLine]\) \)\)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(Plot[2 x\^3\ - \ 3 x\^2 - 2 x + 1, {x, \(-2\), 2}]\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .61803 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 0.5 0.238095 0.518474 0.0661761 [ [.02381 .50597 -6 -9 ] [.02381 .50597 6 0 ] [.2619 .50597 -6 -9 ] [.2619 .50597 6 0 ] [.7381 .50597 -3 -9 ] [.7381 .50597 3 0 ] [.97619 .50597 -3 -9 ] [.97619 .50597 3 0 ] [.4875 .12142 -12 -4.5 ] [.4875 .12142 0 4.5 ] [.4875 .25377 -12 -4.5 ] [.4875 .25377 0 4.5 ] [.4875 .38612 -12 -4.5 ] [.4875 .38612 0 4.5 ] [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .02381 .51847 m .02381 .52472 L s [(-2)] .02381 .50597 0 1 Mshowa .2619 .51847 m .2619 .52472 L s [(-1)] .2619 .50597 0 1 Mshowa .7381 .51847 m .7381 .52472 L s [(1)] .7381 .50597 0 1 Mshowa .97619 .51847 m .97619 .52472 L s [(2)] .97619 .50597 0 1 Mshowa .125 Mabswid .07143 .51847 m .07143 .52222 L s .11905 .51847 m .11905 .52222 L s .16667 .51847 m .16667 .52222 L s .21429 .51847 m .21429 .52222 L s .30952 .51847 m .30952 .52222 L s .35714 .51847 m .35714 .52222 L s .40476 .51847 m .40476 .52222 L s .45238 .51847 m .45238 .52222 L s .54762 .51847 m .54762 .52222 L s .59524 .51847 m .59524 .52222 L s .64286 .51847 m .64286 .52222 L s .69048 .51847 m .69048 .52222 L s .78571 .51847 m .78571 .52222 L s .83333 .51847 m .83333 .52222 L s .88095 .51847 m .88095 .52222 L s .92857 .51847 m .92857 .52222 L s .25 Mabswid 0 .51847 m 1 .51847 L s .5 .12142 m .50625 .12142 L s [(-6)] .4875 .12142 1 0 Mshowa .5 .25377 m .50625 .25377 L s [(-4)] .4875 .25377 1 0 Mshowa .5 .38612 m .50625 .38612 L s [(-2)] .4875 .38612 1 0 Mshowa .125 Mabswid .5 .1545 m .50375 .1545 L s .5 .18759 m .50375 .18759 L s .5 .22068 m .50375 .22068 L s .5 .28686 m .50375 .28686 L s .5 .31995 m .50375 .31995 L s .5 .35303 m .50375 .35303 L s .5 .41921 m .50375 .41921 L s .5 .4523 m .50375 .4523 L s .5 .48539 m .50375 .48539 L s .5 .08833 m .50375 .08833 L s .5 .05524 m .50375 .05524 L s .5 .02215 m .50375 .02215 L s .5 .55156 m .50375 .55156 L s .5 .58465 m .50375 .58465 L s .5 .61774 m .50375 .61774 L s .25 Mabswid .5 0 m .5 .61803 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath .5 Mabswid .16414 0 m .18221 .09292 L .22272 .26048 L .26171 .38558 L .28158 .43682 L .30316 .48358 L .32216 .51759 L .34309 .54776 L .36292 .56979 L .3739 .5794 L .38395 .58667 L .39323 .59214 L .40336 .59681 L .40891 .59882 L .41406 .60033 L .41899 .60149 L .42424 .6024 L .42684 .60273 L .4296 .60301 L .43195 .60317 L .43328 .60324 L .43452 .60328 L .43522 .6033 L .43597 .60331 L .43668 .60332 L .43733 .60332 L .43858 .60331 L .43989 .60328 L .44057 .60326 L .44131 .60323 L .44263 .60316 L .44421 .60306 L .44565 .60294 L .45034 .60242 L .453 .60202 L .45548 .60159 L .46582 .59917 L .47634 .59571 L .48628 .59159 L .50487 .58186 L .54333 .55478 L .58425 .51882 L .62365 .4809 L .66154 .4448 L .70188 .41038 L .72046 .39696 L .74071 .38469 L .75169 .37923 L .76188 .37501 L .77162 .37179 L Mistroke .77702 .37037 L .78198 .3693 L .787 .36846 L .78953 .36813 L .79229 .36784 L .79373 .36772 L .79508 .36763 L .79664 .36755 L .79733 .36752 L .79806 .3675 L .7987 .36748 L .7994 .36746 L .80064 .36745 L .80133 .36745 L .80208 .36746 L .80279 .36747 L .80343 .36749 L .80461 .36753 L .80587 .36759 L .80814 .36774 L .81083 .36799 L .81327 .36829 L .8186 .36918 L .82362 .37033 L .83336 .37343 L .84367 .37801 L .85247 .38303 L .86214 .38977 L .88162 .40747 L .90253 .433 L .92374 .46636 L .94386 .50543 L .97619 .58465 L Mfstroke % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 177.938}, ImageMargins->{{43, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg`3oool0 0`000000oooo0?ooo`1e0?ooo`030000003oool0oooo0;80oooo000k0?ooo`030000003oool0oooo 07D0oooo00<000000?ooo`3oool0/P3oool003/0oooo00<000000?ooo`3oool0M@3oool00`000000 oooo0?ooo`2b0?ooo`00?03oool00`000000oooo0?ooo`1d0?ooo`030000003oool0oooo0;80oooo 000l0?ooo`030000003oool0oooo07@0oooo00<000000?ooo`3oool0/P3oool003`0oooo00<00000 0?ooo`3oool0M03oool00`000000oooo0?ooo`2b0?ooo`00?03oool00`000000oooo0?ooo`1d0?oo o`030000003oool0oooo0;80oooo000l0?ooo`030000003oool0oooo07@0oooo00<000000?ooo`3o ool0/P3oool003`0oooo00<000000?ooo`3oool0M03oool200000;<0oooo000m0?ooo`030000003o ool0oooo07<0oooo00<000000?ooo`3oool0/P3oool003d0oooo00<000000?ooo`3oool0L`3oool0 0`000000oooo0?ooo`2b0?ooo`00?@3oool00`000000oooo0?ooo`1c0?ooo`030000003oool0oooo 0;80oooo000m0?ooo`030000003oool0oooo07<0oooo00<000000?ooo`3oool0/P3oool003d0oooo 00<000000?ooo`3oool0L`3oool00`000000oooo0?ooo`2b0?ooo`00?P3oool00`000000oooo0?oo o`1b0?ooo`030000003oool0oooo0;80oooo000n0?ooo`030000003oool0oooo0780oooo00<00000 0?ooo`3oool0/P3oool003h0oooo00<000000?ooo`3oool0LP3oool00`000000oooo0?ooo`2b0?oo o`00?P3oool00`000000oooo0?ooo`1b0?ooo`030000003oool0oooo0;80oooo000n0?ooo`030000 003oool0oooo0780oooo00<000000?ooo`3oool0/P3oool003h0oooo00<000000?ooo`3oool0LP3o ool00`000000oooo0?ooo`2b0?ooo`00?`3oool00`000000oooo0?ooo`1a0?ooo`800000/`3oool0 03l0oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?ooo`2b0?ooo`00?`3oool00`000000 oooo0?ooo`1a0?ooo`030000003oool0oooo0;80oooo000o0?ooo`030000003oool0oooo0740oooo 00<000000?ooo`3oool0/P3oool003l0oooo00<000000?ooo`3oool0L@3oool00`000000oooo0?oo o`2b0?ooo`00@03oool00`000000oooo0?ooo`1`0?ooo`030000003oool0oooo0;80oooo00100?oo o`030000003oool0oooo0700oooo00<000000?ooo`3oool0/P3oool00400oooo00<000000?ooo`3o ool0L03oool00`000000oooo0?ooo`2b0?ooo`00@03oool00`000000oooo0?ooo`1`0?ooo`030000 003oool0oooo0;80oooo00100?ooo`030000003oool0oooo0700oooo00<000000?ooo`3oool0/P3o ool00400oooo00<000000?ooo`3oool0L03oool00`000000oooo0?ooo`2b0?ooo`00@@3oool00`00 0000oooo0?ooo`1_0?ooo`030000003oool0oooo0;80oooo00110?ooo`030000003oool0oooo06l0 oooo0P00002c0?ooo`00@@3oool00`000000oooo0?ooo`1_0?ooo`030000003oool0oooo0;80oooo 00110?ooo`030000003oool0oooo06l0oooo00<000000?ooo`3oool0/P3oool00440oooo00<00000 0?ooo`3oool0K`3oool00`000000oooo0?ooo`2b0?ooo`00@P3oool00`000000oooo0?ooo`1^0?oo o`030000003oool0oooo0;80oooo00120?ooo`030000003oool0oooo06h0oooo00<000000?ooo`3o ool0/P3oool00480oooo00<000000?ooo`3oool0KP3oool00`000000oooo0?ooo`2b0?ooo`00@P3o ool00`000000oooo0?ooo`1^0?ooo`030000003oool0oooo0;80oooo00130?ooo`030000003oool0 oooo06d0oooo00<000000?ooo`3oool0/P3oool004<0oooo00<000000?ooo`3oool0I03oool30000 00H0oooo00<000000?ooo`3oool0/P3oool004<0oooo00<000000?ooo`3oool0H`3oool01@000000 oooo0?ooo`3oool0000000D0oooo00<000000?ooo`3oool0/P3oool004<0oooo00<000000?ooo`3o ool0H`3oool01@000000oooo0?ooo`3oool0000000D0oooo00<000000?ooo`3oool0/P3oool004@0 oooo00<000000?ooo`3oool0F@3oool6000000<0oooo00D000000?ooo`3oool0oooo000000050?oo o`<00000/P3oool004@0oooo00<000000?ooo`3oool0HP3oool4000000H0oooo00<000000?ooo`3o ool0/P3oool004@0oooo00<000000?ooo`3oool0HP3oool00`000000oooo0?ooo`070?ooo`030000 003oool0oooo0;80oooo00140?ooo`030000003oool0oooo06<0oooo00<000000?ooo`3oool01P3o ool00`000000oooo0?ooo`2b0?ooo`00A@3oool00`000000oooo0?ooo`1S0?ooo`<000001@3oool0 0`000000oooo0?ooo`2b0?ooo`00A@3oool00`000000oooo0?ooo`1[0?ooo`030000003oool0oooo 0;80oooo00150?ooo`030000003oool0oooo06/0oooo00<000000?ooo`3oool0/P3oool004D0oooo 00<000000?ooo`3oool0J`3oool00`000000oooo0?ooo`2b0?ooo`00AP3oool00`000000oooo0?oo o`1Z0?ooo`030000003oool0oooo0;80oooo00160?ooo`030000003oool0oooo06X0oooo00<00000 0?ooo`3oool0/P3oool004H0oooo00<000000?ooo`3oool0JP3oool00`000000oooo0?ooo`2b0?oo o`00AP3oool00`000000oooo0?ooo`1Z0?ooo`800000/`3oool004L0oooo00<000000?ooo`3oool0 J@3oool00`000000oooo0?ooo`2b0?ooo`00A`3oool00`000000oooo0?ooo`1Y0?ooo`030000003o ool0oooo0;80oooo00170?ooo`030000003oool0oooo06T0oooo00<000000?ooo`3oool0/P3oool0 04L0oooo00<000000?ooo`3oool0J@3oool00`000000oooo0?ooo`2b0?ooo`00B03oool00`000000 oooo0?ooo`1X0?ooo`030000003oool0oooo0;80oooo00180?ooo`030000003oool0oooo06P0oooo 00<000000?ooo`3oool0/P3oool004P0oooo00<000000?ooo`3oool0J03oool00`000000oooo0?oo o`2b0?ooo`00B03oool00`000000oooo0?ooo`1X0?ooo`030000003oool0oooo0;80oooo00190?oo o`030000003oool0oooo06L0oooo00<000000?ooo`3oool0/P3oool004T0oooo00<000000?ooo`3o ool0I`3oool00`000000oooo0?ooo`2b0?ooo`00B@3oool00`000000oooo0?ooo`1W0?ooo`030000 003oool0oooo0;80oooo00190?ooo`030000003oool0oooo06L0oooo0P00002c0?ooo`00BP3oool0 0`000000oooo0?ooo`1V0?ooo`030000003oool0oooo0;80oooo001:0?ooo`030000003oool0oooo 06H0oooo00<000000?ooo`3oool0/P3oool004X0oooo00<000000?ooo`3oool0IP3oool00`000000 oooo0?ooo`2b0?ooo`00BP3oool00`000000oooo0?ooo`1V0?ooo`030000003oool0oooo0;80oooo 001;0?ooo`030000003oool0oooo06D0oooo00<000000?ooo`3oool0/P3oool004/0oooo00<00000 0?ooo`3oool0I@3oool00`000000oooo0?ooo`2b0?ooo`00B`3oool00`000000oooo0?ooo`1U0?oo o`030000003oool0oooo0;80oooo001;0?ooo`030000003oool0oooo06D0oooo00<000000?ooo`3o ool0/P3oool004`0oooo00<000000?ooo`3oool0I03oool00`000000oooo0?ooo`2b0?ooo`00C03o ool00`000000oooo0?ooo`1T0?ooo`030000003oool0oooo0;80oooo001<0?ooo`030000003oool0 oooo06@0oooo00<000000?ooo`3oool0/P3oool004`0oooo00<000000?ooo`3oool0I03oool20000 0;<0oooo001=0?ooo`030000003oool0oooo06<0oooo00<000000?ooo`3oool0/P3oool004d0oooo 00<000000?ooo`3oool0H`3oool00`000000oooo0?ooo`2b0?ooo`00C@3oool00`000000oooo0?oo o`1S0?ooo`030000003oool0oooo0;80oooo001=0?ooo`030000003oool0oooo06<0oooo00<00000 0?ooo`3oool0/P3oool004h0oooo00<000000?ooo`3oool0HP3oool00`000000oooo0?ooo`2b0?oo o`00CP3oool00`000000oooo0?ooo`1R0?ooo`030000003oool0oooo0;80oooo001>0?ooo`030000 003oool0oooo0680oooo00<000000?ooo`3oool0/P3oool004h0oooo00<000000?ooo`3oool0HP3o ool00`000000oooo0?ooo`2b0?ooo`00C`3oool00`000000oooo0?ooo`1I0?ooo`<000001@3oool0 0`000000oooo0?ooo`2b0?ooo`00C`3oool00`000000oooo0?ooo`1J0?ooo`030000003oool0oooo 00@0oooo00<000000?ooo`3oool0/P3oool004l0oooo00<000000?ooo`3oool0FP3oool00`000000 oooo0?ooo`040?ooo`030000003oool0oooo0;80oooo001?0?ooo`030000003oool0oooo04h0oooo 1P0000020?ooo`H000001@3oool300000;80oooo001@0?ooo`030000003oool0oooo05H0oooo00@0 00000?ooo`3oool000001P3oool00`000000oooo0?ooo`2b0?ooo`00D03oool00`000000oooo0?oo o`1F0?ooo`040000003oool0oooo000000H0oooo00<000000?ooo`3oool0/P3oool00500oooo00<0 00000?ooo`3oool0E`3oool00`000000oooo000000060?ooo`030000003oool0oooo0;80oooo001A 0?ooo`030000003oool0oooo05L0oooo0P0000060?ooo`030000003oool0oooo0;80oooo001A0?oo o`030000003oool0oooo05l0oooo00<000000?ooo`3oool0/P3oool00540oooo00<000000?ooo`3o ool0G`3oool00`000000oooo0?ooo`2b0?ooo`00DP3oool00`000000oooo0?ooo`1N0?ooo`030000 003oool0oooo0;80oooo001B0?ooo`030000003oool0oooo05h0oooo00<000000?ooo`3oool0/P3o ool00580oooo00<000000?ooo`3oool0GP3oool00`000000oooo0?ooo`2b0?ooo`00DP3oool00`00 0000oooo0?ooo`1N0?ooo`030000003oool0oooo0;80oooo001C0?ooo`030000003oool0oooo05d0 oooo00<000000?ooo`3oool0/P3oool005<0oooo00<000000?ooo`3oool0G@3oool200000;<0oooo 001C0?ooo`030000003oool0oooo05d0oooo00<000000?ooo`3oool0/P3oool005@0oooo00<00000 0?ooo`3oool0G03oool00`000000oooo0?ooo`2b0?ooo`00E03oool00`000000oooo0?ooo`1L0?oo o`030000003oool0oooo0;80oooo001D0?ooo`030000003oool0oooo05`0oooo00<000000?ooo`3o ool0/P3oool005D0oooo00<000000?ooo`3oool0F`3oool00`000000oooo0?ooo`2b0?ooo`00E@3o ool00`000000oooo0?ooo`1K0?ooo`030000003oool0oooo0;80oooo001E0?ooo`030000003oool0 oooo05/0oooo00<000000?ooo`3oool0/P3oool005H0oooo00<000000?ooo`3oool0FP3oool00`00 0000oooo0?ooo`2b0?ooo`00EP3oool00`000000oooo0?ooo`1J0?ooo`030000003oool0oooo0;80 oooo001F0?ooo`030000003oool0oooo05X0oooo00<000000?ooo`3oool0/P3oool005L0oooo00<0 00000?ooo`3oool0F@3oool00`000000oooo0?ooo`2b0?ooo`00E`3oool00`000000oooo0?ooo`1I 0?ooo`800000/`3oool005L0oooo00<000000?ooo`3oool0F@3oool00`000000oooo0?ooo`2b0?oo o`00E`3oool00`000000oooo0?ooo`1I0?ooo`030000003oool0oooo0;80oooo001H0?ooo`030000 003oool0oooo05P0oooo00<000000?ooo`3oool0/P3oool005P0oooo00<000000?ooo`3oool0F03o ool00`000000oooo0?ooo`2b0?ooo`00F03oool00`000000oooo0?ooo`1H0?ooo`030000003oool0 oooo0;80oooo001I0?ooo`030000003oool0oooo05L0oooo00<000000?ooo`3oool0/P3oool005T0 oooo00<000000?ooo`3oool0E`3oool00`000000oooo0?ooo`2b0?ooo`00F@3oool00`000000oooo 0?ooo`1G0?ooo`030000003oool0oooo0;80oooo001J0?ooo`030000003oool0oooo05H0oooo00<0 00000?ooo`3oool0/P3oool005X0oooo00<000000?ooo`3oool0EP3oool00`000000oooo0?ooo`2b 0?ooo`00FP3oool00`000000oooo0?ooo`1F0?ooo`030000003oool0oooo0;80oooo001K0?ooo`03 0000003oool0oooo05D0oooo0P00002c0?ooo`00F`3oool00`000000oooo0?ooo`1E0?ooo`030000 003oool0oooo0;80oooo001K0?ooo`030000003oool0oooo05D0oooo00<000000?ooo`3oool0/P3o ool005`0oooo00<000000?ooo`3oool0E03oool00`000000oooo0?ooo`2b0?ooo`00G03oool00`00 0000oooo0?ooo`1D0?ooo`030000003oool0oooo0;80oooo001L0?ooo`030000003oool0oooo05@0 oooo00<000000?ooo`3oool0HP3oool>00000480oooo001L0?ooo`030000003oool0oooo05@0oooo 00<000000?ooo`3oool0G@3oool5000000h0oooo0`00000o0?ooo`00G@3oool00`000000oooo0?oo o`1C0?ooo`030000003oool0oooo05/0oooo0P00000F0?ooo`800000?@3oool005d0oooo00<00000 0?ooo`3oool0B03oool5000000H0oooo00<000000?ooo`3oool0F@3oool2000001X0oooo0P00000k 0?ooo`00G@3oool00`000000oooo0?ooo`180?ooo`050000003oool0oooo0?ooo`0000001P3oool0 0`000000oooo0?ooo`1G0?ooo`8000007P3oool3000003P0oooo001N0?ooo`030000003oool0oooo 04P0oooo00<000000?ooo`3oool01`3oool00`000000oooo0?ooo`1E0?ooo`8000008`3oool20000 03H0oooo001N0?ooo`030000003oool0oooo03l0oooo1P0000040?ooo`030000003oool0oooo00H0 oooo0`00001C0?ooo`8000009`3oool00`000000oooo0?ooo`0c0?ooo`00GP3oool00`000000oooo 0?ooo`1:0?ooo`030000003oool0oooo00D0oooo00<000000?ooo`3oool0D@3oool2000002X0oooo 0P00000c0?ooo`00G`3oool00`000000oooo0?ooo`1:0?ooo`030000003oool0oooo00@0oooo00<0 00000?ooo`3oool0C`3oool2000002h0oooo00<000000?ooo`3oool0<03oool005l0oooo00<00000 0?ooo`3oool0AP3oool01@000000oooo0?ooo`3oool0000000H0oooo00<000000?ooo`3oool0C@3o ool200000340oooo00<000000?ooo`3oool0;`3oool005l0oooo00<000000?ooo`3oool0A`3oool3 000000L0oooo00<000000?ooo`3oool0C03oool00`000000oooo0?ooo`0b0?ooo`030000003oool0 oooo02h0oooo001P0?ooo`030000003oool0oooo0500oooo00<000000?ooo`3oool0BP3oool20000 03H0oooo0P00000^0?ooo`00H03oool00`000000oooo0?ooo`1@0?ooo`030000003oool0oooo04T0 oooo00<000000?ooo`3oool0>03oool00`000000oooo0?ooo`0[0?ooo`00H@3oool00`000000oooo 0?ooo`1?0?ooo`030000003oool0oooo04P0oooo00<000000?ooo`3oool0>P3oool00`000000oooo 0?ooo`0Z0?ooo`00H@3oool00`000000oooo0?ooo`1?0?ooo`030000003oool0oooo04H0oooo0P00 000n0?ooo`030000003oool0oooo02T0oooo001Q0?ooo`030000003oool0oooo04l0oooo00<00000 0?ooo`3oool0A@3oool00`000000oooo0?ooo`0o0?ooo`030000003oool0oooo02P0oooo001R0?oo o`030000003oool0oooo04h0oooo00<000000?ooo`3oool0A03oool00`000000oooo0?ooo`110?oo o`030000003oool0oooo02L0oooo001R0?ooo`030000003oool0oooo04h0oooo00<000000?ooo`3o ool0@`3oool00`000000oooo0?ooo`120?ooo`030000003oool0oooo02L0oooo001R0?ooo`030000 003oool0oooo04h0oooo0P0000120?ooo`800000AP3oool00`000000oooo0?ooo`0V0?ooo`00H`3o ool00`000000oooo0?ooo`1=0?ooo`030000003oool0oooo0400oooo00<000000?ooo`3oool0A`3o ool00`000000oooo0?ooo`0U0?ooo`00H`3oool00`000000oooo0?ooo`1=0?ooo`030000003oool0 oooo03l0oooo00<000000?ooo`3oool0B@3oool00`000000oooo0?ooo`0T0?ooo`00I03oool00`00 0000oooo0?ooo`1<0?ooo`030000003oool0oooo03h0oooo00<000000?ooo`3oool0BP3oool00`00 0000oooo0?ooo`0T0?ooo`00I03oool00`000000oooo0?ooo`1<0?ooo`030000003oool0oooo03d0 oooo00<000000?ooo`3oool0C03oool00`000000oooo0?ooo`0S0?ooo`00I03oool00`000000oooo 0?ooo`1<0?ooo`030000003oool0oooo03`0oooo00<000000?ooo`3oool0CP3oool00`000000oooo 0?ooo`0R0?ooo`00I@3oool00`000000oooo0?ooo`1;0?ooo`030000003oool0oooo03X0oooo0P00 001B0?ooo`030000003oool0oooo0240oooo001U0?ooo`030000003oool0oooo04/0oooo00<00000 0?ooo`3oool0>@3oool00`000000oooo0?ooo`1B0?ooo`030000003oool0oooo0240oooo001U0?oo o`030000003oool0oooo04/0oooo00<000000?ooo`3oool0>03oool00`000000oooo0?ooo`1D0?oo o`030000003oool0oooo0200oooo001V0?ooo`030000003oool0oooo04X0oooo00<000000?ooo`3o ool0=`3oool00`000000oooo0?ooo`1F0?ooo`030000003oool0oooo01l0oooo001V0?ooo`030000 003oool0oooo04X0oooo00<000000?ooo`3oool0=P3oool00`000000oooo0?ooo`1G0?ooo`030000 003oool0oooo01l0oooo001W0?ooo`030000003oool0oooo04T0oooo00<000000?ooo`3oool0=@3o ool00`000000oooo0?ooo`1I0?ooo`030000003oool0oooo01h0oooo001W0?ooo`030000003oool0 oooo04T0oooo0P00000e0?ooo`030000003oool0oooo05/0oooo00<000000?ooo`3oool07@3oool0 06P0oooo00<000000?ooo`3oool0B03oool00`000000oooo0?ooo`0c0?ooo`030000003oool0oooo 05`0oooo00<000000?ooo`3oool07@3oool006P0oooo00<000000?ooo`3oool0B03oool00`000000 oooo0?ooo`0b0?ooo`030000003oool0oooo05h0oooo00<000000?ooo`3oool0703oool006P0oooo 00<000000?ooo`3oool0B03oool00`000000oooo0?ooo`0a0?ooo`030000003oool0oooo0600oooo 00<000000?ooo`3oool06`3oool006T0oooo00<000000?ooo`3oool0A`3oool00`000000oooo0?oo o`0_0?ooo`800000H`3oool00`000000oooo0?ooo`0K0?ooo`00J@3oool00`000000oooo0?ooo`17 0?ooo`030000003oool0oooo02h0oooo00<000000?ooo`3oool0I03oool00`000000oooo0?ooo`0J 0?ooo`00JP3oool00`000000oooo0?ooo`160?ooo`030000003oool0oooo02d0oooo00<000000?oo o`3oool0I@3oool00`000000oooo0?ooo`0J0?ooo`00JP3oool00`000000oooo0?ooo`160?ooo`03 0000003oool0oooo02`0oooo00<000000?ooo`3oool0I`3oool00`000000oooo0?ooo`0I0?ooo`00 2@3oool500000580oooo1@0000060?ooo`030000003oool0oooo04D0oooo00<000000?ooo`3oool0 :`3oool00`000000oooo0?ooo`0R0?ooo`D00000@@3oool00`000000oooo0?ooo`0<0?ooo`D00000 203oool000T0oooo00D000000?ooo`3oool0oooo0000001D0?ooo`030000003oool0oooo00H0oooo 00<000000?ooo`3oool0A@3oool00`000000oooo0?ooo`0Z0?ooo`030000003oool0oooo02D0oooo 00<000000?ooo`3oool0@P3oool00`000000oooo0?ooo`0;0?ooo`050000003oool0oooo0?ooo`00 0000203oool000X0oooo00<000000?ooo`3oool0E@3oool00`000000oooo0?ooo`070?ooo`030000 003oool0oooo04@0oooo00<000000?ooo`3oool0:@3oool00`000000oooo0?ooo`0V0?ooo`030000 003oool0oooo0480oooo00<000000?ooo`3oool0303oool00`000000oooo0?ooo`090?ooo`0000<0 oooo000000000000100000040?ooo`030000003oool0oooo04T0oooo1P0000050?ooo`030000003o ool0oooo00L0oooo00<000000?ooo`3oool0A03oool00`000000oooo0?ooo`0X0?ooo`030000003o ool0oooo02L0oooo00<000000?ooo`3oool0@`3oool00`000000oooo0?ooo`0<0?ooo`030000003o ool0oooo00P0oooo000<0?ooo`030000003oool0oooo05<0oooo00<000000?ooo`3oool0203oool0 0`000000oooo0?ooo`130?ooo`800000:03oool00`000000oooo0?ooo`0X0?ooo`030000003oool0 oooo04<0oooo00<000000?ooo`3oool03@3oool00`000000oooo0?ooo`070?ooo`003@3oool00`00 0000oooo0?ooo`1B0?ooo`030000003oool0oooo00P0oooo00<000000?ooo`3oool0@`3oool00`00 0000oooo0?ooo`0V0?ooo`030000003oool0oooo02T0oooo00<000000?ooo`3oool0A03oool00`00 0000oooo0?ooo`0=0?ooo`030000003oool0oooo00H0oooo00090?ooo`050000003oool0oooo0?oo o`000000DP3oool3000000/0oooo00<000000?ooo`3oool0@P3oool00`000000oooo0?ooo`0U0?oo o`030000003oool0oooo02P0oooo0`0000160?ooo`030000003oool0oooo00T0oooo00D000000?oo o`3oool0oooo000000080?ooo`002P3oool3000005D0oooo00<000000?ooo`3oool02@3oool00`00 0000oooo0?ooo`120?ooo`030000003oool0oooo02@0oooo00<000000?ooo`3oool0:`3oool00`00 0000oooo0?ooo`150?ooo`030000003oool0oooo00T0oooo0`0000090?ooo`00K`3oool00`000000 oooo0?ooo`110?ooo`030000003oool0oooo02<0oooo00<000000?ooo`3oool0M03oool00`000000 oooo0?ooo`0E0?ooo`00K`3oool00`000000oooo0?ooo`110?ooo`030000003oool0oooo0280oooo 00<000000?ooo`3oool0MP3oool00`000000oooo0?ooo`0D0?ooo`00L03oool00`000000oooo0?oo o`100?ooo`030000003oool0oooo0240oooo00<000000?ooo`3oool0M`3oool00`000000oooo0?oo o`0D0?ooo`00L03oool00`000000oooo0?ooo`100?ooo`030000003oool0oooo0200oooo00<00000 0?ooo`3oool0N@3oool00`000000oooo0?ooo`0C0?ooo`00L@3oool00`000000oooo0?ooo`0o0?oo o`030000003oool0oooo01l0oooo00<000000?ooo`3oool0NP3oool00`000000oooo0?ooo`0C0?oo o`00L@3oool00`000000oooo0?ooo`0o0?ooo`030000003oool0oooo01h0oooo00<000000?ooo`3o ool0O03oool00`000000oooo0?ooo`0B0?ooo`00LP3oool00`000000oooo0?ooo`0n0?ooo`030000 003oool0oooo01d0oooo00<000000?ooo`3oool0O@3oool00`000000oooo0?ooo`0B0?ooo`00LP3o ool00`000000oooo0?ooo`0n0?ooo`030000003oool0oooo01`0oooo00<000000?ooo`3oool0O`3o ool00`000000oooo0?ooo`0A0?ooo`00o`00001X00000040oooo00080?ooo`030000003oool0oooo 00h0oooo00<000000?ooo`3oool03`3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 00h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 0080oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 00h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 00T0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 00h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0oooo 00h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo 00@0oooo00<000000?ooo`3oool01`3oool00`000000oooo0?ooo`070?ooo`00203oool00`000000 oooo0?ooo`1C0?ooo`030000003oool0oooo01@0oooo00<000000?ooo`3oool0>`3oool00`000000 oooo0?ooo`0I0?ooo`030000003oool0oooo03H0oooo00<000000?ooo`3oool0BP3oool00`000000 oooo0?ooo`060?ooo`030000003oool0oooo00L0oooo001e0?ooo`030000003oool0oooo03/0oooo 00<000000?ooo`3oool0603oool00`000000oooo0?ooo`240?ooo`030000003oool0oooo0100oooo 001f0?ooo`030000003oool0oooo03X0oooo00<000000?ooo`3oool05`3oool00`000000oooo0?oo o`260?ooo`030000003oool0oooo00l0oooo001g0?ooo`030000003oool0oooo03T0oooo00<00000 0?ooo`3oool05P3oool00`000000oooo0?ooo`270?ooo`030000003oool0oooo00l0oooo001h0?oo o`030000003oool0oooo03P0oooo00<000000?ooo`3oool05@3oool00`000000oooo0?ooo`290?oo o`030000003oool0oooo00h0oooo001i0?ooo`030000003oool0oooo03L0oooo00<000000?ooo`3o ool04`3oool2000008`0oooo00<000000?ooo`3oool03P3oool007T0oooo00<000000?ooo`3oool0 =`3oool00`000000oooo0?ooo`0B0?ooo`030000003oool0oooo08`0oooo00<000000?ooo`3oool0 3P3oool007X0oooo00<000000?ooo`3oool0=P3oool00`000000oooo0?ooo`0A0?ooo`030000003o ool0oooo08h0oooo00<000000?ooo`3oool03@3oool007/0oooo00<000000?ooo`3oool0=@3oool0 0`000000oooo0?ooo`0@0?ooo`030000003oool0oooo08l0oooo00<000000?ooo`3oool03@3oool0 07`0oooo00<000000?ooo`3oool0=03oool00`000000oooo0?ooo`0?0?ooo`030000003oool0oooo 0940oooo00<000000?ooo`3oool0303oool007d0oooo00<000000?ooo`3oool0<`3oool2000000l0 oooo00<000000?ooo`3oool0TP3oool00`000000oooo0?ooo`0<0?ooo`00OP3oool00`000000oooo 0?ooo`0b0?ooo`030000003oool0oooo00d0oooo00<000000?ooo`3oool0T`3oool00`000000oooo 0?ooo`0<0?ooo`00OP3oool00`000000oooo0?ooo`0b0?ooo`030000003oool0oooo00/0oooo0P00 002G0?ooo`030000003oool0oooo00/0oooo001o0?ooo`030000003oool0oooo0340oooo00<00000 0?ooo`3oool02P3oool00`000000oooo0?ooo`2G0?ooo`030000003oool0oooo00/0oooo00200?oo o`030000003oool0oooo0300oooo00<000000?ooo`3oool02@3oool00`000000oooo0?ooo`2I0?oo o`030000003oool0oooo00X0oooo00210?ooo`030000003oool0oooo02l0oooo00<000000?ooo`3o ool01`3oool2000009`0oooo00<000000?ooo`3oool02P3oool00880oooo00<000000?ooo`3oool0 ;P3oool00`000000oooo0?ooo`060?ooo`030000003oool0oooo09d0oooo00<000000?ooo`3oool0 2@3oool008<0oooo00<000000?ooo`3oool0;@3oool00`000000oooo0?ooo`040?ooo`800000X03o ool00`000000oooo0?ooo`090?ooo`00Q03oool00`000000oooo0?ooo`0/0?ooo`030000003oool0 oooo00<0oooo00<000000?ooo`3oool0X03oool00`000000oooo0?ooo`090?ooo`00Q@3oool00`00 0000oooo0?ooo`0[0?ooo`030000003oool0oooo0080oooo00<000000?ooo`3oool0XP3oool00`00 0000oooo0?ooo`080?ooo`00QP3oool00`000000oooo0?ooo`0Z0?ooo`030000003oool0oooo0080 0000Y@3oool00`000000oooo0?ooo`080?ooo`00Q`3oool2000002X0oooo0`00002X0?ooo`030000 003oool0oooo00L0oooo00290?ooo`030000003oool0oooo02H0oooo0`00002Y0?ooo`030000003o ool0oooo00L0oooo002:0?ooo`800000903oool2000000030?ooo`000000oooo0;<0oooo002<0?oo o`800000803oool2000000<0oooo00<000000?ooo`3oool0/P3oool008h0oooo0P00000L0?ooo`80 00001@3oool00`000000oooo0?ooo`2b0?ooo`00T03oool00`000000oooo0?ooo`0G0?ooo`800000 1`3oool00`000000oooo0?ooo`2b0?ooo`00T@3oool400000140oooo100000090?ooo`030000003o ool0oooo0;80oooo002E0?oooa4000003@3oool00`000000oooo0?ooo`2b0?ooo`00/`3oool00`00 0000oooo0?ooo`2b0?ooo`00/`3oool00`000000oooo0?ooo`2b0?ooo`00/`3oool00`000000oooo 0?ooo`2b0?ooo`00/`3oool00`000000oooo0?ooo`2b0?ooo`00/`3oool200000;<0oooo0000\ \>"], ImageRangeCache->{{{0, 359}, {221.375, 0}} -> {-2.10475, -7.83481, \ 0.014657, 0.0527344}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Solve[2 x\^3\ - \ 3 x\^2 - 2 x + 1 \[Equal] 0, \ x]\)], "Input"], Cell[BoxData[ \({{x \[Rule] 1\/2 + \((9 + 2\ \[ImaginaryI]\ \@237)\)\^\(1/3\)\/\(2\ \ 3\^\(2/3\)\) + 7\/\(2\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\)}, \ {x \[Rule] 1\/2 - \(\((1 + \[ImaginaryI]\ \@3)\)\ \((9 + 2\ \[ImaginaryI]\ \ \@237)\)\^\(1/3\)\)\/\(4\ 3\^\(2/3\)\) - \(7\ \((1 - \[ImaginaryI]\ \ \@3)\)\)\/\(4\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\)}, {x \ \[Rule] 1\/2 - \(\((1 - \[ImaginaryI]\ \@3)\)\ \((9 + 2\ \[ImaginaryI]\ \ \@237)\)\^\(1/3\)\)\/\(4\ 3\^\(2/3\)\) - \(7\ \((1 + \[ImaginaryI]\ \ \@3)\)\)\/\(4\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\)}}\)], \ "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N[1\/2 + \((9 + 2\ \[ImaginaryI]\ \@237)\)\^\(1/3\)\/\(2\ 3\^\(2/3\)\) \ + 7\/\(2\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\), 3]\)], "Input"], Cell[BoxData[ \(\(\(1.8892285591291942`\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N[1\/2 - \(\((1 + \[ImaginaryI]\ \@3)\)\ \((9 + 2\ \[ImaginaryI]\ \ \@237)\)\^\(1/3\)\)\/\(4\ 3\^\(2/3\)\) - \(7\ \((1 - \[ImaginaryI]\ \ \@3)\)\)\/\(4\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\), 3]\)], "Input"], Cell[BoxData[ \(\(\(0.355415726775845`\)\(\[InvisibleSpace]\)\) + 0.`\ \[ImaginaryI]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(N[1\/2 - \(\((1 - \[ImaginaryI]\ \@3)\)\ \((9 + 2\ \[ImaginaryI]\ \ \@237)\)\^\(1/3\)\)\/\(4\ 3\^\(2/3\)\) - \(7\ \((1 + \[ImaginaryI]\ \ \@3)\)\)\/\(4\ \((3\ \((9 + 2\ \[ImaginaryI]\ \@237)\))\)\^\(1/3\)\), 2]\)], "Input"], Cell[BoxData[ \(\(-0.7446442859050393`\) - 5.551115123125783`*^-17\ \[ImaginaryI]\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(2 x\^3\ - \ 3 x\^2 - 2 x + 1 /. {x -> \(-0.744644\)}\)], "Input"], Cell[BoxData[ \(1.6567723164495618`*^-6\)], "Output"] }, Open ]], Cell[BoxData[ \(\(\(Maatriksid\)\(\[IndentingNewLine]\) \)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(A = {{2, 1, 0}, {0, 1, 0}, \ {1, 0, 3}}\)], "Input"], Cell[BoxData[ \({{2, 1, 0}, {0, 1, 0}, {1, 0, 3}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Tr[A]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Det[A]\)], "Input"], Cell[BoxData[ \(6\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(Inverse[A]\)], "Input"], Cell[BoxData[ \({{1\/2, \(-\(1\/2\)\), 0}, {0, 1, 0}, {\(-\(1\/6\)\), 1\/6, 1\/3}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(LinearSolve[A, {a, 0, 0}]\)], "Input"], Cell[BoxData[ \({a\/2, 0, \(-\(a\/6\)\)}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\[Integral]Sin[b*x]\ \[DifferentialD]x\)], "Input"], Cell[BoxData[ \(\(-\(Cos[b\ x]\/b\)\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\[Integral]\_0\%Pi\ Sin[b*x]\ \ \[DifferentialD]x\)], "Input"], Cell[BoxData[ \(1\/b - Cos[b\ \[Pi]]\/b\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(\[Sum]\+\(k\ = \ 1\)\%n\ k\^3\)], "Input"], Cell[BoxData[ \(1\/4\ n\^2\ \((1 + n)\)\^2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(DSolve[\(y'\)[x] \[Equal] 2 y[x], y[x], x]\)], "Input"], Cell[BoxData[ \({{y[x] \[Rule] \[ExponentialE]\^\(2\ x\)\ C[1]}}\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(DSolve[{\(y'\)[x] \[Equal] 2 y[x], y[0] \[Equal] 2}, y[x], x]\)], "Input"], Cell[BoxData[ \({{y[x] \[Rule] 2\ \[ExponentialE]\^\(2\ x\)}}\)], "Output"] }, Open ]] }, FrontEndVersion->"4.2 for Microsoft Windows", ScreenRectangle->{{0, 1280}, {0, 941}}, WindowSize->{495, 740}, WindowMargins->{{15, Automatic}, {0, Automatic}}, Magnification->1.25 ] (******************************************************************* Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. *******************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1754, 51, 139, 3, 78, "Input"], Cell[CellGroupData[{ Cell[1918, 58, 87, 1, 36, "Input"], Cell[2008, 61, 23631, 519, 233, 3793, 270, "GraphicsData", "PostScript", \ "Graphics"], Cell[25642, 582, 130, 3, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[25809, 590, 88, 1, 36, "Input"], Cell[25900, 593, 659, 12, 339, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26596, 610, 180, 3, 112, "Input"], Cell[26779, 615, 110, 2, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[26926, 622, 250, 4, 122, "Input"], Cell[27179, 628, 109, 2, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27325, 635, 250, 4, 122, "Input"], Cell[27578, 641, 106, 2, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[27721, 648, 89, 1, 36, "Input"], Cell[27813, 651, 57, 1, 35, "Output"] }, Open ]], Cell[27885, 655, 79, 2, 56, "Input"], Cell[CellGroupData[{ Cell[27989, 661, 72, 1, 35, "Input"], Cell[28064, 664, 67, 1, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28168, 670, 38, 1, 35, "Input"], Cell[28209, 673, 35, 1, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28281, 679, 39, 1, 35, "Input"], Cell[28323, 682, 35, 1, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28395, 688, 43, 1, 35, "Input"], Cell[28441, 691, 109, 2, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28587, 698, 58, 1, 35, "Input"], Cell[28648, 701, 58, 1, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28743, 707, 71, 1, 51, "Input"], Cell[28817, 710, 55, 1, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[28909, 716, 82, 1, 54, "Input"], Cell[28994, 719, 57, 1, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[29088, 725, 63, 1, 64, "Input"], Cell[29154, 728, 60, 1, 49, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[29251, 734, 76, 1, 35, "Input"], Cell[29330, 737, 82, 1, 35, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[29449, 743, 102, 2, 56, "Input"], Cell[29554, 747, 79, 1, 35, "Output"] }, Open ]] } ] *) (******************************************************************* End of Mathematica Notebook file. *******************************************************************)